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Abstract

Kinematic equations for the motion of slowly propagating, weakly curved fronts in bistable media are derived. The equations
generalize earlier derivations where algebraic relations between the normal front velocity and its curvature are assumed.
Such relations do not capture the dynamics near nonequilibrium Ising—Bloch (NIB) bifurcations, where transitions between
counterpropagating Bloch fronts may spontaneously occur. The kinematic equations consist of coupled integro-differential
equations for the front curvature and the front velocity, the order parameter associated with the NIB bifurcation. They capture
the NIB bifurcation, the instabilities of Ising and Bloch fronts to transverse perturbations, the core structure of a spiral wave,
and the dynamic process of spiral wave nucleation. Copyright © 1998 Published by Elsevier Science B.V.
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1. Introduction

Interfaces separating different equilibrium or nonequilibrium states appear in a variety of contexts including
crystal growth, domain walls in magnetic and hydrodynamic systems, and reaction—diffusion fronts [1]. The global
patterns that appear in these systems depend to a large extent on the possible occurrence of interfacial instabilities.
A transverse instability of the interface, for example, may lead to fingering and the formation of labyrinthine pat-
terns [2-8]. Another instability with dramatic effects on pattern formation is the nonequilibrium Ising-Bloch (NIB)
bifurcation [9-13]. The bifurcation, which takes a single stable (Ising) front to a pair of counterpropagating stable
(Bloch) fronts, has been found in chemical reactions [14—16] and in liquid crystals [17-19]. Far below the NIB bifur-
cation stationary patterns or uniform states prevail. Far beyond it, a regime of ordered traveling patterns, including
spiral waves, exists. In the vicinity of the bifurcation disordered spatio-temporal patterns, involving repeated events
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of spiral-wave nucleation appear. This behavior, which we call “spiral turbulence”, has been attributed to sponta-
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interactions with boundaries [6,20].

A common theoretical approach to studying pattern formation in interfacial systems is based on a geometric
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interface on its curvature is known, the shape of the interface can be determined at any given time. For reaction—
diffusion fronts this dependence may become particularly simple: Away from an NIB bifurcation, a linear relation
is an excellent approximation {24,26,27]. The curvature equation, however, does not capture possible transitions
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In this paper we consider bistable media that exhibit NIB bifurcations and derive kinematic front equations which
generalize the geometne curvamre egnanon. The new Xinematic equaiions capinre iransifions between counterprop-
agatng fronts, and spontaneous spiral-wave nucleaiion, a process wnmch plays a crucial role n tne onset of spual
turbulence. The equations are:

— An equation for the order parameter, Cy, associated with the NIB bifurcation:
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— A geometric equation for the front curvature, «:
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— An equation relating the normal front velocity C,, the curvature «, and the order parameter, Co:
C, = Co— D«x. 3)

In these equations s is the front arclength, and the critical parameter value, . designates the NIB bifurcation point.
Note that Eq. (3) cannot be regarded as a linear relation between the normal velocity of the front and its curvature
since Cp is not a constant but a dynamical variable coupled to curvature through Eq. (1). In fact, Egs. (1) and (3)
can be recast into a single integro-differential equation for the normal velocity (using Eq. (2))
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which replaces the algebraic C,—« relation used in earlier derivations. An algebraic C,~« relation can be recovered
firom Egs. {11 and {37 assuming the order parameter Ty follows adiabatically slow curvatyre variations. This issue
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The order parameter equation (1) yields the NIB bifurcation for planar (uncurved) fronts. For a symmetric bistable
system (yo = 0), the Ising front, Cy = 0, is stable for @ > a.. At @ = « the Ising front becomes unstable and
a pair of Bloch fronts appears, Cp = C5 = +./(a — @)/B. For a nonsymmetric system (yy % 0) this pitchfork
bifurcation unfolds into a saddle node bifurcation in the usual way.

A brief account of the results to be reported here has appeared in [30]. We present in Section 3 a detailed derivation
of the kinematic equations for a particular reaction—diffusion mode] introduced in Section 2. In Section 4 we study
the kinematic equations. We analyze the stability of planar fronts to transverse perturbations and present numerical






